Welcome! In this section I present information about articles and publications:
- Journal articles
- Conferences articles
- Book chapters
- Inproceedings.
You can select visualization options for: year and / or articles type / all types
2018
|
1. | Paul D Rosero-Montalvo; Anderson Dibujes; Carlos Vásquez-Ayala; Ana Umaquinga-Criollo; Jaime R Michilena; Luis Suaréz; Stefany Flores; Daniel Jaramillo Intelligent System of Squat Analysis Exercise to Prevent Back Injuries Conference Intelligent Technologies and Robotics, Springer, Cham, 2018, ISBN: Print ISBN 978-3-030-02827-5, (Online ISBN 978-3-030-02828-2
Information and Communication Technologies of Ecuador (TIC.EC)). Abstract | Links | BibTeX | Tags: Back injuries, Embedded systems, Intelligent systems, Squat analysis @conference{RoseroMontalvo2019a,
title = {Intelligent System of Squat Analysis Exercise to Prevent Back Injuries},
author = {Paul D Rosero-Montalvo and Anderson Dibujes and Carlos Vásquez-Ayala and Ana Umaquinga-Criollo and Jaime R Michilena and Luis Suaréz and Stefany Flores and Daniel Jaramillo},
editor = {Springer},
url = {https://link.springer.com/chapter/10.1007/978-3-030-02828-2_15},
doi = {10.1007/978-3-030-02828-2_15},
isbn = {Print ISBN 978-3-030-02827-5},
year = {2018},
date = {2018-10-18},
booktitle = {Intelligent Technologies and Robotics},
pages = {193-205},
publisher = {Springer, Cham},
abstract = {The sports ergonomics study allows a bio-mechanical analysis in order to evaluate the impact produced by different muscle conditioning exercises such as the squat. This exercise, if carried out in an erroneous way, it can cause lumbar injuries. The present electronic system acquire the data of the Smith bar and the back by means of accelerometer sensors. This is done in order to implement an intelligent algorithm that allows to recognize if the athlete performs the exercise properly. For this, a stage of prototypes selection and a comparison of classification algorithms (CA) is carried out. Finally, a quantitative measure of equilibrium between both criteria is established for its proper selection. As a result, the k-Nearest Neighbors algorithm with k = 5 achieves a 96% performance and a 50% training matrix reduction.},
note = {Online ISBN 978-3-030-02828-2
Information and Communication Technologies of Ecuador (TIC.EC)},
keywords = {Back injuries, Embedded systems, Intelligent systems, Squat analysis},
pubstate = {published},
tppubtype = {conference}
}
The sports ergonomics study allows a bio-mechanical analysis in order to evaluate the impact produced by different muscle conditioning exercises such as the squat. This exercise, if carried out in an erroneous way, it can cause lumbar injuries. The present electronic system acquire the data of the Smith bar and the back by means of accelerometer sensors. This is done in order to implement an intelligent algorithm that allows to recognize if the athlete performs the exercise properly. For this, a stage of prototypes selection and a comparison of classification algorithms (CA) is carried out. Finally, a quantitative measure of equilibrium between both criteria is established for its proper selection. As a result, the k-Nearest Neighbors algorithm with k = 5 achieves a 96% performance and a 50% training matrix reduction. |